Human In Space
The History of Space Exploration
During the time that has passed since the launching of the first artificial satellite in 1957, astronauts have traveled to the moon, probes have explored the solar system, and instruments in space have discovered thousands of planets around other stars.
Human beings in space: debate and consequences
Explaining the smelly secrets of outer space
What does outer space smell like? Learn about some reported smells of outer space and the chemical causes of these.(more)
See all videos for this article
By the early 2020s more than 500 people, coming from more than 40 different countries and more than 10 percent of whom were women, had flown in space. As of that same time, only Russia, China, and the United States had the capability of carrying out human spaceflights. With the retirement of the space shuttle in 2011, the United States lost its independent human spaceflight capability. Such capability was not regained until 2020, when a new private commercial spacecraft, SpaceX’s Crew Dragon, was ready for use.
Risks and benefits
Human spaceflight is both risky and expensive. From the crash landing of the first crewed Soyuz spacecraft in 1967 to the breakup of the shuttle orbiter Columbia in 2003, 18 people died during spaceflights. Providing the systems to support people while in orbit adds significant additional costs to a space mission, and ensuring that the launch, flight, and reentry are carried out as safely as possible also requires highly reliable and thus costly equipment, including both spacecraft and launchers.
Opportunity, artist's conception
The U.S. robotic rover Opportunity traversing the Martian surface, as depicted in an artist's conception.(more)
From the start of human spaceflight efforts, some have argued that the benefits of sending humans into space do not justify either the risks or the costs. They contend that robotic missions can produce equal or even greater scientific results with lower expenditures and that human presence in space has no other valid justification. Those who support human spaceflight cite the still unmatched ability of human intelligence, flexibility, and reliability in carrying out certain experiments in orbit, in repairing and maintaining robotic spacecraft and automated instruments in space, and in acting as explorers in initial journeys to other places in the solar system. They also argue that astronauts serve as excellent role models for younger people and act as vicarious representatives of the many who would like to fly in space themselves. In addition is the long-held view that eventually some humans will leave Earth to establish permanent outposts and larger settlements on the Moon, Mars, or other locations.
Selecting people for spaceflights
astronaut spacewalk training
Space-suited U.S. astronaut (centre), assisted by a scuba diver, practicing in-space assembly routines in a water-filled microgravity simulation tank at the Yuri Gagarin Cosmonaut Training Centre (Star City) near Moscow. The rehearsal was part of preparations for a space shuttle mission to the International Space Station in September 2000.(more)
Most of the individuals who have gone into space are highly trained astronauts and cosmonauts, the two designations having originated in the United States and the Soviet Union, respectively. (Both taikonaut and yuhangyuan have sometimes been used to describe the astronauts in China’s crewed space program.) Those governments interested in sending some of their citizens into space select candidates from many applicants on the basis of their backgrounds and physical and psychological characteristics. The candidates undergo rigorous training before being chosen for an initial spaceflight and then prepare in detail for each mission assigned. Training centres with specialized facilities exist in the United States, at NASA’s Johnson Space Center in Houston, Texas; in Russia, at the Yuri Gagarin Cosmonaut Training Centre (commonly called Star City), outside Moscow; in Germany, at ESA’s European Astronaut Centre in Cologne; in Japan, at JAXA’s Tsukuba Space Center, near Tokyo; and in China, at Space City, near Beijing.
Astronauts and cosmonauts who undertook multiple spaceflights traditionally fell into one of two categories. The first consisted of pilots, often with military backgrounds, who had extensive experience in flying high-performance aircraft. They were responsible for piloting space vehicles such as the space shuttle and Soyuz. The other category included scientists and engineers who are not necessarily pilots. They had primary responsibility for carrying out the scientific and engineering activities scheduled for a particular mission. They were known in the U.S. space program as mission specialists and in the Russian space program as flight engineers. With the development of long-duration space stations such as Mir and the ISS, the distinction between pilot and nonpilot astronauts and cosmonauts has become less clear, because all members of a space station crew carry out station operations and experiments.
A third category of individuals who have gone into space was called variously payload specialists or guest cosmonauts. These individuals include scientists and engineers who accompany their experiments into orbit; individuals selected to go into space for political reasons, such as members of the U.S. Congress or persons from countries allied with the Soviet Union or the United States; and a few nontechnical people—for example, the rare journalist or teacher or the private individual willing to pay substantial amounts of money for a spaceflight. These people are intensively trained for their particular flight but usually go into space only once. The first orbital spaceflight with a crew of private individuals, one of whom had chartered the spacecraft, Inspiration4, launched in 2021. At some future time, the costs and risks of human spaceflight may become low enough to accommodate a booming business of space tourism, in which many people would be able to experience spaceflight. Until then, access to orbit will be restricted to a comparatively small number of people. However, several firms have planned for paying customers brief suborbital flights that would provide a few minutes of weightlessness and dramatic views of Earth as they are launched on a trajectory carrying them just below 100 km (62 miles) in altitude, the generally recognized border between airspace and outer space.
Biomedical, psychological, and sociological aspects
Human beings have evolved to live in the environment of Earth’s surface. The space environment—with its very low level of gravity, lack of atmosphere, wide temperature variations, and often high levels of ionizing radiation from the Sun, from particles trapped in the Van Allen radiation belts, and from cosmic rays—is an unnatural place for humans. An understanding of the effects on the human body of spaceflight, particularly long-duration flights away from Earth to destinations such as Mars, is incomplete.
Many of those going into space experience space sickness (see motion sickness), which may cause vomiting, nausea, and stomach discomfort, among other symptoms. The condition is thought to arise from a contradiction experienced in the brain between external information coming from the eyes and internal information coming from the balance organs in the inner ear, which are normally stimulated continually by gravity. Space sickness usually disappears within two or three days as the brain adapts to the space environment, although symptoms may reappear temporarily when the space traveler returns to Earth’s gravity.
The virtual absence of gravity causes loss of tissue mass in the calf and thigh muscles, which are used on Earth’s surface to counter the effect of gravity. Muscles that are less involved with gravity, such as those used to bend the legs or arms, are less affected. Some loss of muscle mass in the heart has been observed in astronauts on long-duration missions. In the absence of gravity, blood that normally pools in the body’s lower extremities initially shifts to the upper regions. As a result, the face appears puffy, the person experiences sinus congestion and headaches, and blood production decreases as the body attempts to compensate. In addition, in the space environment, some weight-bearing bones in the body atrophy.
Yuri Usachyov exercising at the International Space Station
Although the changes in muscle, bone, and blood production do not pose problems for astronauts in space, they do so on their return to Earth. For example, in normal gravity, a person with decreased bone mass runs a greater risk of breaking a bone during normal strenuous activity. Countermeasures, particularly various forms of exercise while in space, have been developed to prevent these effects from causing health problems later on Earth. Even so, people recovering from long-duration flights require varying amounts of time to readjust to Earth conditions. Light-headedness usually disappears within one or two days; lack of balance and symptoms of motion sickness, in three to five days; anemia, in one to two weeks; muscle atrophy, in three to five weeks; and bone atrophy, in one to three years or more.
Except for the Apollo trips to the Moon, all human spaceflights have taken place in near-Earth orbit. In this location, Earth’s magnetic field shields humans from potentially dangerous exposure to ionizing radiation from recurrent major disturbances on the Sun and interplanetary cosmic rays. The Apollo missions, which were all less than two weeks long, were timed to avoid exposure to anticipated high levels of solar radiation. If, however, humans were sent on journeys to Mars or other destinations that would take months or even years, such measures would be inadequate. Exposure to high levels of solar radiation or cosmic rays could cause potentially fatal tumours and other health problems (see radiation injury). Space engineers will need to devise adequate radiation shielding for interplanetary crewed spacecraft and will require accurate predictions of radiation damage to the body to ensure that risks remain within acceptable limits. Biomedical advances are also necessary to develop methods for the early detection and mitigation of radiation damage. Nevertheless, the effects of radiation may remain a major obstacle to long human voyages in space.
In addition to the biomedical issues associated with human spaceflight are a number of psychological and sociological issues, particularly for long-duration missions aboard a space station or to distant destinations. To be in space is to be in an extreme and isolated environment. Mission planners will have to consider issues relating to crew size and composition—particularly if the crews are mixtures of men and women and come from several nations with different cultures—if interpersonal conflicts are to be avoided and effective teamwork achieved.
Science in space
In the decades following the first Sputnik and Explorer satellites, the ability to put their instruments into outer space gave scientists the opportunity to acquire new information about the natural universe, information that in many cases would have been unobtainable any other way. Space science added a new dimension to the quest for knowledge, complementing and extending what had been gained from centuries of theoretical speculations and ground-based observations.
After Gagarin’s 1961 flight, space missions involving human crews carried out a range of significant research, from on-site geologic investigations on the Moon to a wide variety of observations and experiments aboard orbiting spacecraft. In particular, the presence in space of humans as experimenters and, in some cases, as experimental subjects facilitated studies in biomedicine and materials science. Nevertheless, most space science was, and continues to be, performed by robotic spacecraft in Earth orbit, in other locations from which they observe the universe, or on missions to various bodies in the solar system. In general, such missions are far less expensive than those involving humans and can carry sophisticated automated instruments to gather a wide variety of relevant data.
In addition to the United States and the Soviet Union, several other countries achieved the capability of developing and operating scientific spacecraft and thus carrying out their own space science missions. They include Japan, China, Canada, India, and a number of European countries such as the United Kingdom, France, Italy, and Germany, acting alone and through cooperative organizations, particularly the European Space Agency. Furthermore, many other countries became involved in space activities through the participation of their scientists in specific missions. Bilateral or multilateral cooperation between various countries in carrying out space science missions grew to be the usual way of proceeding.
Scientific research in space can be divided into five general areas: (1) solar and space physics, including study of the magnetic and electromagnetic fields in space and the various energetic particles also present, with particular attention to their interactions with Earth, (2) exploration of the planets, moons, asteroids, comets, meteoroids, and dust in the solar system, (3) study of the origin, evolution, and current state of the varied objects in the universe beyond the solar system, (4) research on nonliving and living materials, including humans, in the very low gravity levels of the space environment, and (5) study of Earth from space.
Solar and space physics
auroral oval
Earth's full North Polar auroral oval, in an image taken in ultraviolet light by the U.S. Polar spacecraft over northern Canada, April 6, 1996. In the colour-coded image, which simultaneously shows dayside and nightside auroral activity, the most intense levels of activity are red, and the lowest levels are blue. Polar, launched in February 1996, was designed to further scientists' understanding of how plasma energy contained in the solar wind interacts with Earth's magnetosphere.(more)
The first scientific discovery made with instruments orbiting in space was the existence of the Van Allen radiation belts, discovered by Explorer 1 in 1958. Subsequent space missions investigated Earth’s magnetosphere, the surrounding region of space in which the planet’s magnetic field exerts a controlling effect (see Earth: The magnetic field and magnetosphere). Of particular and ongoing interest has been the interaction of the flux of charged particles emitted by the Sun, called the solar wind, with the magnetosphere. Early space science investigations showed, for example, that luminous atmospheric displays known as auroras are the result of this interaction, and scientists came to understand that the magnetosphere is an extremely complex phenomenon.
NASA's Parker Solar Probe spacecraft
The focus of inquiry in space physics was later extended to understanding the characteristics of the Sun, both as an average star and as the primary source of energy for the rest of the solar system, and to exploring space between the Sun and Earth and other planets (see interplanetary medium). The magnetospheres of other planets, particularly Jupiter with its strong magnetic field, also came under study. Scientists sought a better understanding of the internal dynamics and overall behaviour of the Sun, the underlying causes of variations in solar activity, and the way in which those variations propagate through space and ultimately affect Earth’s magnetosphere and upper atmosphere. The concept of space weather was advanced to describe the changing conditions in the Sun-Earth region of the solar system. Variations in space weather can cause geomagnetic storms that interfere with the operation of satellites and even systems on the ground such as power grids.
solar flare photographed by Skylab
A spectacular flare on the Sun, photographed in extreme ultraviolet light on December 19, 1973, by the third astronaut crew aboard the U.S. space station Skylab.(more)
To carry out the investigations required for addressing these scientific questions, the United States, Europe, the Soviet Union, and Japan developed a variety of space missions, often in a coordinated fashion. In the United States, early studies of the Sun were undertaken by a series of Orbiting Solar Observatory satellites (launched 1962–75) and the astronaut crews of the Skylab space station in 1973–74, using that facility’s Apollo Telescope Mount. These were followed by the Solar Maximum Mission satellite (launched 1980). ESA developed the Ulysses mission (1990) to explore the Sun’s polar regions. Solar-terrestrial interactions were the focus of many of the Explorer series of spacecraft (1958–75) and the Orbiting Geophysical Observatory satellites (1964–69).
In the 1980s NASA, ESA, and Japan’s Institute of Space and Astronautical Science undertook a cooperative venture to develop a comprehensive series of space missions, named the International Solar-Terrestrial Physics Program, that would be aimed at full investigation of the Sun-Earth connection. This program was responsible for the U.S. Wind (1994) and Polar (1996) spacecraft, the European Solar and Heliospheric Observatory (SOHO; 1995) and Cluster (2000) missions, and the Japanese Geotail satellite (1992).
Among many other missions, NASA has launched a number of satellites, including Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED, 2001); the Japanese-U.S.-U.K. collaboration Hinode (2006); and Solar Terrestrial Relations Observatory (STEREO, 2006), part of its Solar Terrestrial Probes program. The Solar Dynamics Observatory (2010); the twin Van Allen Probes (2012); and the Parker Solar Probe (2018), which made the closest flybys of the Sun, were part of another NASA program called Living with a Star. A two-satellite European/Chinese mission called Double Star (2003–04) studied the impact of the Sun on Earth’s environment.
Solar system exploration
Luna 9
Luna 9, the first spacecraft to soft-land on the Moon. It was launched by the Soviet Union on January 31, 1966, and returned photographs of the lunar surface for three days.(more)
From the start of space activity, scientists recognized that spacecraft could gather scientifically valuable data about the various planets, moons, and smaller bodies in the solar system. Both the United States and the U.S.S.R. attempted to send robotic missions to the Moon in the late 1950s. The first four U.S. Pioneer spacecraft, Pioneer 0–3, launched in 1958, were not successful in returning data about the Moon. The fifth mission, Pioneer 4 (1959), was the first U.S. spacecraft to escape Earth’s gravitational pull; it flew by the Moon at twice the planned distance but returned some useful data. Three Soviet missions, Luna 1–3, explored the vicinity of the Moon in 1959, confirming that it had no appreciable magnetic field and sending back the first-ever images of its far side. Luna 1 was the first spacecraft to fly past the Moon, beating Pioneer 4 by two months. Luna 2, in making a hard landing on the lunar surface, was the first spacecraft to strike another celestial object. Later, in the 1960s and early 1970s, Luna and Lunokhod spacecraft soft-landed on the Moon, and some gathered soil samples and returned them to Earth.
Viking 2 lander (foreground) on Mars, photographed by one of the spacecraft's own cameras, 1976.(more)
Alpha Regio, Venus
Merged pancake domes on the eastern edge of the Alpha Regio highland area of Venus, in an oblique view generated by computer from radar data gathered by the Magellan spacecraft. The volcanic features, each about 25 km (15 miles) in diameter and about 750 metres (0.5 mile) high, are thought to have been formed from the extrusion of extremely viscous lava onto the surface. The vertical scale of the image is exaggerated to bring out topological detail; colour is simulated from surface images taken by Soviet Venera landers.(more)
Comet Halley nucleus
Composite image of the nucleus of Comet Halley produced from 68 photographs taken on March 13–14, 1986, by the Halley Multicolour Camera onboard the Giotto spacecraft.(more)
In the 1960s the United States became the first country to send a spacecraft to the vicinity of other planets; Mariner 2 flew by Venus in December 1962, and Mariner 4 flew past Mars in July 1965. Among significant accomplishments of planetary missions in succeeding decades were the U.S. Viking landings on Mars in 1976 and the Soviet Venera explorations of the atmosphere and surface of Venus from the mid-1960s to the mid-1980s. In the years since, the United States has continued an active program of solar system exploration, as did the Soviet Union until its dissolution in 1991. Japan launched missions to the Moon, Mars, Halley’s Comet, and Venus and returned samples from the asteroids Itokawa and Ryugu. Europe’s first independent solar system mission, Giotto, also flew by Halley. After the turn of the 21st century, it sent missions to the Moon, Venus, and Mars and an orbiter-lander, Rosetta-Philae, to a comet. India and China sent the Chandrayaan-1 (2008) and two Chang’e (2007, 2010) missions, respectively, to orbit the Moon. China’s Chang’e 3 mission landed a small rover, Yutu, on the Moon in 2013, and Chang’e 4 made the first landing on the far side of the Moon in 2019. India’s Mars Orbiter Mission entered orbit around that planet in 2014. China placed the Tianwen-1 lander and the Zhurong rover on Mars in 2021, and that same year Hope, an orbiter from the United Arab Emirates, entered Mars orbit. NASA’s Dawn mission (2007) orbited the large asteroid Vesta from 2011 to 2012 and entered orbit around the dwarf planet Ceres in 2015.
U.S. spacecraft Galileo making a flyby of Jupiter's moon Io, in an artist's rendering. At the stage of the mission being depicted, the atmospheric probe has already been deployed; its former point of attachment is the circular structure at Galileo's nearer end, along the main axis. Projecting from the central body are a probe relay antenna; a scan platform holding four optical instruments; a long boom (continuing out of view) with plasma, particle, and magnetic-field detectors; and two shorter booms carrying power generators that convert the heat from radioactive isotope decay into electricity. The high-gain antenna, which failed to unfurl fully during the mission, and its large circular sun shield are at the farther end of the craft.(more)
Near Earth Asteroid Rendezvous
U.S. Near Earth Asteroid Rendezvous (NEAR) space probe in orbit around an asteroid, in an artist's conception. Launched February 17, 1996, NEAR rendezvoused with the asteroid Eros, which it studied for a year in orbit before touching down on its surface in February 2001.(more)
Eros asteroid
Opposite hemispheres of the asteroid Eros, shown in a pair of mosaics made from images taken by the U.S. Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft on February 23, 2000, from orbit around the asteroid.(more)
Early on, scientists planned to conduct solar system exploration in three stages: initial reconnaissance from spacecraft flying by a planet, comet, or asteroid; detailed surveillance from a spacecraft orbiting the object; and on-site research after landing on the object or, in the case of a giant gas planet, by sending a probe into its atmosphere. All three of those stages have been carried out for the Moon, Venus, Mars, Jupiter, Saturn, a comet, and several asteroids. Several Soviet and U.S. robotic spacecraft have landed on Venus and the Moon, and the United States has landed spacecraft on the surface of Mars. A long-term detailed surveillance of Jupiter and its moons began in 1995 when the U.S. Galileo spacecraft took up orbit around the planet, at the same time releasing a probe into the turbulent Jovian atmosphere. In 2001 the U.S. Near Earth Asteroid Rendezvous (NEAR) spacecraft landed on the asteroid Eros and transmitted information from its surface for more than two weeks.